Why do foraging stream salmonids move during summer?

Authored by C Gowan, KD Fausch

Date Published: 2002

DOI: 10.1023/a:1016010723609

Sponsors: No sponsors listed

Platforms: No platforms listed

Model Documentation: Other Narrative

Model Code URLs: Model code not found

Abstract

We hypothesize that foraging stream salmonids move during summer because (1) they monitor habitat conditions at a reach scale (100s of m), and (2) dominant fish move when conditions in their present foraging location become sub-optimal relative to conditions at other locations in the reach. To test these ideas, we quantified temporal variation in foraging habitat quality between late spring and early fall in a reach of a small Rocky Mountain brook charr, Salvelinus fontinalis, stream, predicted optimal-foraging fish distributions within the reach, and experimentally manipulated access to foraging sites and measured fish responses. Our results show that high-quality foraging sites were located at certain places in the reach during one period, but at different places during others, consistent with the hypothesis that fish movement is required if dominant fish are to occupy high-quality foraging sites throughout summer. The optimal foraging model was able to predict foraging locations within study pools, but not the exact location of individual fish within the pools or the reach. However, empirical evidence suggests that fish were distributed in order to maximize energy intake at the reach scale. Finally, dominant fish excluded from their preferred foraging location either left the pools (three of six cases), or began to occupy focal points of the next largest fish which, in turn, exited the pool (two of six cases). If habitat selection was occurring only within habitat units, then large fish, when excluded from their preferred locations, would select the next best locations within the pool. Taken together, these results suggest that charr use summertime movements to both monitor habitat conditions at a large spatial scale, and to gain access to optimal foraging locations even as conditions change temporally.
Tags
Brown trout Restricted movement Drift-feeding salmonids Rainbow-trout Grayling thymallus-arcticus Juvenile atlantic salmon Individual-based approach Southern appalachian stream Fish population-dynamics Colorado streams