The importance and adaptive value of life-history evolution for metapopulation dynamics

Authored by Dries Bonte, Quinten Bafort

Date Published: 2019

DOI: 10.1111/1365-2656.12928

Sponsors: Flanders Research Foundation

Platforms: Python

Model Documentation: ODD

Model Code URLs: https://zenodo.org/record/1483949#.XdCM7-hKhEY

Abstract

The spatial configuration and size of patches influence metapopulation dynamics by altering colonisation-extinction dynamics and local density dependency. This spatial forcing as determined by the metapopulation typology then imposes strong selection pressures on life-history traits, which will in turn feed back on the ecological metapopulation dynamics. Given the relevance of metapopulation persistence for biological conservation, and the potential rescuing role of evolution, a firm understanding of the relevance of these eco-evolutionary processes is essential. We here follow a systems' modelling approach to quantify the importance of spatial forcing and experimentally observed life-history evolution for metapopulation demography as quantified by (meta)population size and variability. We therefore developed an individual-based model matching an earlier experimental evolution with spider mites to perform virtual translocation and invasion experiments that would have been otherwise impossible to conduct. We show that (a) metapopulation demography is more affected by spatial forcing than by life-history evolution, but that life-history evolution contributes substantially to changes in local- and especially metapopulation-level population sizes, (b) extinction rates are minimised by evolution in classical metapopulations, and (c) evolution is optimising individual performance in metapopulations when considering the importance of more cryptic stress resistance evolution. Ecological systems' modelling opens up a promising avenue to quantify the importance of eco-evolutionary feedbacks in spatially structured populations. Metapopulation sizes are especially impacted by evolution, but its variability is mainly determined by the spatial forcing. Eco-evolutionary dynamics can increase the persistence of classical metapopulations. Conservation of genetic variation and, hence, adaptive potential is thus not only essential in the face of environmental change; it also generates putative rescuing feedbacks that impact metapopulation persistence.
Tags
Heterogeneity Demography Dispersal invasion fitness Population-dynamics Extinction Trait Rapid evolution Contemporary evolution Systems' ecology Tetranychus urticae Translocation