Simulating individual work trips for transit-facilitated accessibility study

Authored by Ruihong Huang

Date Published: 2019

DOI: 10.1177/2399808317702148

Sponsors: No sponsors listed

Platforms: No platforms listed

Model Documentation: Other Narrative Flow charts

Model Code URLs: Model code not found

Abstract

To measure job accessibility, person-based approaches have the advantage to capture all accessibility components: land use, transportation system, individual's mobility and travel preference, as well as individual's space and time constraints. This makes person-based approaches more favorable than traditional aggregated approaches in recent years. However, person-based accessibility measures require detailed individual trip data which are very difficult and expensive to acquire, especially at large scales. In addition, traveling by public transportation is a highly time sensitive activity, which can hardly be handled by traditional accessibility measures. This paper presents an agent-based model for simulating individual work trips in hoping to provide an alternative or supplementary solution to person-based accessibility study. In the model, population is simulated as three levels of agents: census tracts, households, and individual workers. And job opportunities (businesses) are simulated as employer agents. Census tract agents have the ability to generate household and worker agents based on their demographic profiles and a road network. Worker agents are the most active agents that can search jobs and find the best paths for commuting. Employer agents can estimate the number of transit-dependent employees, hire workers, and update vacancies. A case study is conducted in the Milwaukee metropolitan area in Wisconsin. Several person-based accessibility measures are computed based on simulated trips, which disclose low accessibility inner city neighborhoods well covered by a transit network.
Tags
Simulation Agent-based modeling GIS networks Microsimulation Geographic information systems Model accessibility Location Impacts Choice Access Travel-time Transit Work trip Space-time