Imitation dynamics of vaccination behaviour on social networks

Authored by Feng Fu, Daniel I. Rosenbloom, Long Wang, Martin A. Nowak

Date Published: 2011-01-07

DOI: 10.1098/rspb.2010.1107

Sponsors: China Scholarship Council John Templeton Foundation Bill and Melinda Gates Foundation United States National Institutes of Health (NIH) National Science Foundation of China United States National Science Foundation (NSF)

Platforms: No platforms listed

Model Documentation: Other Narrative Mathematical description

Model Code URLs: Model code not found

Abstract

The problem of achieving widespread immunity to infectious diseases by voluntary vaccination is often presented as a public-goods dilemma, as an individual's vaccination contributes to herd immunity, protecting those who forgo vaccination. The temptation to free-ride brings the equilibrium vaccination level below the social optimum. Here, we present an evolutionary game-theoretic approach to this problem, exploring the roles of individual imitation behaviour and population structure in vaccination. To this end, we integrate an epidemiological process into a simple agent-based model of adaptive learning, where individuals use anecdotal evidence to estimate costs and benefits of vaccination. In our simulations, we focus on parameter values that are realistic for a flu-like infection. Paradoxically, as agents become more adept at imitating successful strategies, the equilibrium level of vaccination falls below the rational individual optimum. In structured populations, the picture is only somewhat more optimistic: vaccination is widespread over a range of low vaccination costs, but coverage plummets after cost exceeds a critical threshold. This result suggests parallels to historical scenarios in which vaccination coverage provided herd immunity for some time, but then rapidly dropped. Our work sheds light on how imitation of peers shapes individual vaccination choices in social networks.
Tags
Epidemiology evolutionary dynamics peer influence mathematical biology vaccination dilemma