Feature Construction for Controlling Swarms by Visual Demonstration

Authored by Karan K Budhraja, John Winder, Tim Oates

Date Published: 2017

DOI: 10.1145/3084541

Sponsors: No sponsors listed

Platforms: NetLogo

Model Documentation: Other Narrative Flow charts

Model Code URLs: Model code not found

Abstract

Agent-based modeling is a paradigm of modeling dynamic systems of interacting agents that are individually governed by specified behavioral rules. Training a model of such agents to produce an emergent behavior by specification of the emergent (as opposed to agent) behavior is easier from a demonstration perspective. While many approaches involve manual behavior specification via code or reliance on a defined taxonomy of possible behaviors, the meta-modeling framework in Miner [2010] generates mapping functions between agent-level parameters and swarm-level parameters, which are re-usable once generated. This work builds on that framework by integrating demonstration by image or video. The demonstrator specifies spatial motion of the agents over time and retrieves agent-level parameters required to execute that motion. The framework, at its core, uses computationally cheap image-processing algorithms. Our work is tested with a combination of primitive visual feature extraction methods (contour area and shape) and features generated using a pre-trained deep neural network in different stages of image featurization. The framework is also evaluated for its potential using complex visual features for all image featurization stages. Experimental results show significant coherence between demonstrated behavior and predicted behavior based on estimated agent-level parameters specific to the spatial arrangement of agents.
Tags
Control swarm Parameters Visual demonstration Image featurization