Independence and interdependence in collective decision making: an agent-based model of nest-site choice by honeybee swarms

Authored by Christian List, Christian Elsholtz, Thomas D. Seeley

Date Published: 2009-03-27

DOI: 10.1098/rstb.2008.0277

Sponsors: No sponsors listed

Platforms: Mathematica

Model Documentation: Other Narrative Mathematical description

Model Code URLs: Model code not found

Abstract

Condorcet's jury theorem shows that when the members of a group have noisy but independent information about what is best for the group as a whole, majority decisions tend to outperform dictatorial ones. When voting is supplemented by communication, however, the resulting interdependencies between decision makers can strengthen or undermine this effect: they can facilitate information pooling, but also amplify errors. We consider an intriguing non-human case of independent information pooling combined with communication: the case of nest-site choice by honeybee (Apis mellifera) swarms. It is empirically well documented that when there are different nest sites that vary in quality, the bees usually choose the best one. We develop a new agent-based model of the bees' decision process and show that its remarkable reliability stems from a particular interplay of independence and interdependence between the bees.
Tags
Agent-based model Group decision making Honeybees Condorcet's jury theorem information pooling nest-site choice