Reproducibility and usability of chronic virus infection model using agent-based simulation; comparing with a mathematical model

Authored by Jun Itakura, Masayuki Kurosaki, Yoshie Itakura, Sinya Maekawa, Yasuhiro Asahina, Namiki Izumi, Nobuyuki Enomoto

Date Published: 2010-01

DOI: 10.1016/j.biosystems.2009.09.001

Sponsors: No sponsors listed

Platforms: Repast

Model Documentation: Other Narrative Flow charts

Model Code URLs: Model code not found

Abstract

We created agent-based models that visually simulate conditions of chronic viral infections using two software. The results from two models were consistent, when they have same parameters during the actual simulation. The simulation results comprise a transient phase and an equilibrium phase, and unlike the mathematical model, virus count transit smoothly to the equilibrium phase without overshooting which correlates with actual biology in vivo of certain viruses. We investigated the effects caused by varying all the parameters included in concept; increasing virus lifespan, uninfected cell lifespan, uninfected cell regeneration rate, virus production count from infected cells, and infection rate had positive effects to the virus count during the equilibrium period, whereas increasing the latent period, the lifiespan-shortening ratio for infected cells, and the cell cycle speed had negative effects. Virus count at the start did not influence the equilibrium conditions, but it influenced the infection development rate. The space size had no intrinsic effect on the equilibrium period, but virus count maximized when the virus moving speed was twice the space size. These agent-based simulation models reproducibly provide a visual representation of the disease, and enable a simulation that encompasses parameters those are difficult to account for in a mathematical model. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Tags
Agent-based model Virus infectious disease