On the evolution of cell size distribution during bacterial growth cycle: Experimental observations and individual-based model simulations

Authored by Jordi Ferrer, Clara Prats, Daniel Lopez, Josep Vives-Rego, Antoni Giro

Date Published: 2010

Sponsors: No sponsors listed

Platforms: No platforms listed

Model Documentation: Other Narrative

Model Code URLs: Model code not found

Abstract

Individual-based modelling (IbM) has become a fully incorporated part of predictive microbiology methodologies in the last decade. Previous studies of bacterial culture growth cycle with the IbM simulator INDISIM analysed the evolution of bacterial biomass distribution during the different phases of growth. The predicted forward shift during lag, stability during exponential and backward shift when entering the stationary phase have been experimentally observed in an Escherichia coli batch culture by means of flow cytometry and particle size analysis measurements. In addition, the experimental results were analysed using the product distance, a mathematical tool developed to assess the evolution of cell size distribution. These results confirmed the assumptions about the bacterial lag phase made by INDISIM. Moreover, flow cytometry and particle analysis methods were shown to be useful experimental techniques in combination with IbM simulations when studying the evolution of individual properties during the bacterial growth cycle. This is essential in order to provide a new and consistent interpretation of the dynamics and heterogeneity of cell biomass during the growth cycle.
Tags
Heterogeneity Future Division Lag phase Microbial lag Axenic cultures