Levy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis

Authored by Tommaso Russo, Stefano Mariani, Paolo Baldi, Antonio Parisi, Giuseppe Magnifico, Stefano Cataudella

Date Published: 2009

DOI: 10.1016/j.jtbi.2009.01.033

Sponsors: No sponsors listed

Platforms: No platforms listed

Model Documentation: Other Narrative Mathematical description

Model Code URLs: Model code not found

Abstract

The study of animal growth is a longstanding crucial topic of theoretical biology. In this paper we introduce a new class of stochastic growth models that enjoy two crucial properties: the growth path of an individual is monotonically increasing and the mean length at time t follows the classic von Bertalanffy model. Besides the theoretical development, the models are also tested against a large set of length-at-age data collected on Atlantic herring (Clupea harengus): the mean lengths and variances of the cohorts were directly estimated by least squares. The results show that the use of subordinators can lead to models enjoying interesting properties, in particular able to catch some specific features often observed in fish growth data. The use of subordinators seems to allow for an increased fidelity in the description of fish growth, whilst still conforming to the general parameters of the traditional von Bertalanffy equation. (c) 2009 Elsevier Ltd. All rights reserved.
Tags
Individual-based model Dynamics Recruitment Rates Variability Age Atlantic Maturation Size variation